
pandas/Analysis.md at develop/dropna-test · Karenzky/pandas · GitHub

https://github.com/Karenzky/pandas/blob/develop/dropna-test/Analysis.md 1/8

Karenzky / pandas Public

forked from pandas-dev/pandas

5 months ago

202 lines (177 loc) · 10 KB

Time Complexity Relationship Between
dropna() Input Data Size & Execution
Time
Polynomial time complexity is a fundamental concept in computer science, and
understanding how it relates to the size of input data is crucial for optimizing
algorithms and improving computational efficiency. In this analysis, we will explore the
relationship between the data input size N and the execution time of a dropna()
running program, and how this relationship can be analyzed using polynomial
functions. A related discussing issue point can be found here regarding the fact of
infinite loop caused in large frames.

Test Data

The data used for this analysis is generated from the following reproducible example
with N representing for the input data size and a loop running to gain total
milliseconds representing the time taken to process the data for a particular input size.

Reproducible Example

Code Pull requests Actions Projects Security Insights

 develop/dropna-… pandas / Analysis.md Go to file

Karenzky

import pandas as pd
import numpy as np
import sys

class MyFrame(pd.DataFrame):

Preview Code Blame

https://github.com/Karenzky
https://github.com/Karenzky/pandas
https://github.com/pandas-dev/pandas
https://github.com/Karenzky
https://github.com/Karenzky/pandas/commits/develop/dropna-test/Analysis.md
https://github.com/pandas-dev/pandas/issues/50708
https://github.com/Karenzky/pandas/tree/develop/dropna-test
https://github.com/Karenzky/pandas/pulls
https://github.com/Karenzky/pandas/actions
https://github.com/Karenzky/pandas/projects
https://github.com/Karenzky/pandas/security
https://github.com/Karenzky/pandas/pulse
https://github.com/Karenzky/pandas/tree/develop/dropna-test
https://github.com/Karenzky/pandas/commits?author=Karenzky

pandas/Analysis.md at develop/dropna-test · Karenzky/pandas · GitHub

https://github.com/Karenzky/pandas/blob/develop/dropna-test/Analysis.md 2/8

Run the loop to get the execution time

It helps to gain the execution time data for each 1000 N [1,100000].

Curve Plotting & Polynomial Relationship

Basic Analysis

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 for col in self.columns:

 if self.dtypes[col] == "O":
 self[col] = pd.to_numeric(self[col], errors='ignore')

 @property
 def _constructor(self):

 return type(self)

def get_frame(N):
 return MyFrame(

 data=np.vstack(
 [np.where(np.random.rand(N) > 0.36, np.random.rand(N), np.nan)

).T,
 columns=[f"col{i}" for i in range(10)]

)

When N is smallish, no issue
frame = get_frame(1000)
frame.dropna(subset=["col0", "col1"])
print("1000 passed")

Accept a data size value
if __name__ == '__main__':

 N = int(sys.argv[1])
 frame = get_frame(N)
 frame.dropna(subset=["col0", "col1"])
 print(f"{N} passed")

∈

Run the loop
$results = @()
for ($i = 1000; $i -lt 50000; $i += 1000) {

 $output = Measure-Command { py test.py $i } | Out-String
 $milliseconds = [double]($output -split 'TotalMilliseconds : ')[1]
 $results += [pscustomobject]@{N=$i; Milliseconds=$milliseconds}

}
View the results in a table
$results | Out-GridView

pandas/Analysis.md at develop/dropna-test · Karenzky/pandas · GitHub

https://github.com/Karenzky/pandas/blob/develop/dropna-test/Analysis.md 3/8

Initially, the exponential function is implemented trying to fit the curve, while the result
turns to be not quite optimistic.

Then, a quadratic function is applied, which is represented by the equation y = ax^2 +
bx + c. The function is fitted to the data using the np.polyfit() function, which
returns the coefficients a, b, and c that best fit the data. These coefficients are then
used to create a polynomial object using the np.poly1d() function, which can be
evaluated at any point to obtain the predicted execution time for that input size. The
resulting curve shows that the execution time increases rapidly with input size, with a
clear quadratic relationship between N and execution time. This means that the
algorithm has a polynomial time complexity of O(N^2), indicating that the execution
time increases quadratically with input size.

https://github.com/Karenzky/pandas/blob/develop/dropna-test/Exponential.png

pandas/Analysis.md at develop/dropna-test · Karenzky/pandas · GitHub

https://github.com/Karenzky/pandas/blob/develop/dropna-test/Analysis.md 4/8

Similarly, a cubic function also generated, which is represented by the equation y =
ax^3 + bx^2 + cx + d. The function is fitted to the data using the same process as
before, and the resulting curve shows that the execution time increases even more
rapidly with input size than the quadratic function. This indicates that the algorithm has
a polynomial time complexity of O(N^3), meaning that the execution time increases
cubicly with input size.

https://github.com/Karenzky/pandas/blob/develop/dropna-test/Quadratic.png
https://github.com/Karenzky/pandas/blob/develop/dropna-test/Cubic.png

pandas/Analysis.md at develop/dropna-test · Karenzky/pandas · GitHub

https://github.com/Karenzky/pandas/blob/develop/dropna-test/Analysis.md 5/8

The significance of these findings lies in their implications for algorithm design and
optimization. If an algorithm has a polynomial time complexity of O(N^2) or higher, it
may not be suitable for processing large datasets or real-time applications where speed
is crucial. In such cases, it may be necessary to redesign the algorithm to reduce its time
complexity or implement parallel processing techniques to improve efficiency.
Furthermore, an interesting point here in this analysis is that both quadratic function
and cubic function fit well with the original curve, and the next step for digging more in
this phenomenon should be the evaluation and optimization process.

Evaluation & Optimization

When applying a polynomial analysis, the basic idea is to find a function curve that
approximates the real curve infinitely. Such function can be represented as

, where k is the function degree and

&w_{0},...,w_{k}& are polynomial coefficients that being recorded as . In this section,
we will evaluate the fitted polynomial using the mean squared error as the error
function and find the best fitted function degree. Meanwhile, the &R^2& will be
involved and the regularization will be used simultaneously to improve overfitting.

y(x, W) = w0 + w1x + w2x2+. . . +wkxk =
k

∑
i=1

wix
i

W

from sklearn.linear_model import Ridge
from sklearn.metrics import r2_score
from sklearn.preprocessing import PolynomialFeatures
import polyfit
class PolynomialFitting:

 def fitting(x_list,y_list,degree=2):
 if not isinstance(x_list, list):
 raise Exception(print("X axis error"))

 if not isinstance(y_list, list):
 raise Exception(print("Y axis error"))

 if not isinstance(degree, int):
 raise Exception(print("Degree error"))

 try:
 x_array = np.array(x_list)

 y_array = np.array(y_list)
 except:

 raise Exception(print("axis convert error"))
 try:
 w = np.polyfit(x_array, y_array, degree)

 except:
 raise Exception("Polynomial degree too high")

 f = PolynomialFitting.get_fx(w)
 r2 = PolynomialFitting.get_r2(y_array, x_array, f)

 return w, r2, f

 def fitting_with_lambda(x_list,y_list,degree=2,lambda_=0.001):
 if not isinstance(x_list, list):

pandas/Analysis.md at develop/dropna-test · Karenzky/pandas · GitHub

https://github.com/Karenzky/pandas/blob/develop/dropna-test/Analysis.md 6/8

 raise Exception(print("X axis error"))
 if not isinstance(y_list, list):
 raise Exception(print("Y axis error"))

 if not isinstance(degree, int):
 raise Exception(print("Degree error"))

 if not isinstance(lambda_, float):
 raise Exception(print("lambda error"))

 if lambda_<=0.0:
 raise Exception(print("invalid lambda"))

 try:
 x_array = np.array([x_list])

 y_array = np.array([y_list])
 except:

 raise Exception(print("axis convert error"))
 x_array = x_array.T
 y_array = y_array.T

 poly = PolynomialFeatures(degree=degree)
 x_list_poly = poly.fit_transform(x_array)

 lr = Ridge(alpha=(lambda_/2))
 lr.fit(x_list_poly,y_array)
 w=lr.coef_[0]
 w_1 = w.tolist()
 w_1.reverse()
 w=np.array(w_1)
 f = PolynomialFitting.get_fx(w)
 r2 = PolynomialFitting.get_r2(y_list, x_list, f)

 return w, r2, f

 def print_polynomial(w_list):
 fx="y = "
 for i in range(0,len(w_list)):

 param = w_list[i]
 order = len(w_list)-1-i
 if order:

 fx += "{} * x ^ {} + ".format(param, order)
 else:
 fx += "{}".format(param)

 return fx

 def get_fx(w_list):
 f = np.poly1d(w_list)
 return f

 def get_r2(y_ture, x_ture, f):
 r2 = r2_score(y_ture, f(x_ture))
 return r2

 def get_best_fitting(x_list, y_list):
 degree =1
 best_degree =1

pandas/Analysis.md at develop/dropna-test · Karenzky/pandas · GitHub

https://github.com/Karenzky/pandas/blob/develop/dropna-test/Analysis.md 7/8

 w_r, r2_r, f_r = PolynomialFitting.fitting(x_list,y_list,degree)
 while True:

 try:
 w,r2,f=PolynomialFitting.fitting(x_list,y_list,degree)
 print("Degree:{}\tIndex:{}".format(degree, r2))

 if r2<=0 or r2>1:
 break

 if w[0]==0:
 degree +=1

 continue
 if r2> r2_r:

 w_r =w
 r2_r = r2
 f_r = f
 best_degree = degree

 degree += 1
 except:
 break

 print("Result")
 return w_r,r2_r,f_r,best_degree

 def get_best_fitting_with(x_real, y_real):
 best_degree =2
 w_r, r2_r, f_r = PolynomialFitting.fitting_with_lambda(x_real, y_re
 lambda_r =np.exp(0)

 for degree in range(2,10):
 for i in range (0, -19, -1):

 lambda_=np.exp(i)
 w, r2,f = PolynomialFitting.fitting_with_lambda(x_real, y_r
 print("Degree:{},lambda: {}".format(degree, lambda_))

 if r2> r2_r:
 w_r =w
 r2_r = r2
 f_r = f
 best_degree = degree
 lambda_r =lambda_

 return w_r,r2_r,f_r,best_degree, lambda_r

pandas/Analysis.md at develop/dropna-test · Karenzky/pandas · GitHub

https://github.com/Karenzky/pandas/blob/develop/dropna-test/Analysis.md 8/8

As a result, it finds that the best fitting function degree should be 6 with as 0.9989.

Conclusion

In conclusion, the analysis of the polynomial time complexity relationship between
input size and execution time provides valuable insights into the performance of
algorithms and the design of efficient computational systems, which gives us a idea for
the reason why the large frame may cause breakdown when using dropna()
command. By understanding this relationship and using tools such as polynomial
regression to analyze data, developers and researchers may be capible for further
optimizing algorithms and improving computational efficiency in a wide range of
applications.

R2

https://github.com/Karenzky/pandas/blob/develop/dropna-test/Sextic.png

